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The self-organization of porous nanostructures in anodic oxide is considered. A mathematical model which
incorporates the electrochemical transport of oxygen ions within the oxide layer and the chemical reactions at
the metal-oxide and oxide-electrolyte interfaces is developed. It is shown through linear stability analysis that
a short-wave instability exists in certain parameter ranges which can lead to the formation of hexagonally
ordered pores observed in anodized aluminum oxide. Numerical simulations validate these results.
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I. INTRODUCTION

During the process of anodizing many metals in acidic
electrolytes, the natural oxide layer on the anode surface
grows to form a uniformly thick barrier layer. In certain met-
als however �e.g., aluminum,1,2 titanium,3–5 tin,6 etc.�, the
oxide surface can become unstable and form deep pores. In
particular, aluminum also has parameter regimes in which
these pores self-assemble in a highly ordered hexagonal
array.7–10 As aluminum oxide can exhibit barrier layer struc-
tures as well as both regular and irregular porous arrays, we
will only be considering anodized aluminum oxide �AAO� in
this work, although the analysis can be easily generalized to
other anode materials.

AAO has vast industrial and scientific applications. It has
been used to improve the corrosion resistance, hardness, lu-
brication, and adhesion properties of aluminum surfaces as
well as to allow for dying.11,12 More recently, porous AAO
has been used as a template for the fabrication of nanoscale
particles, wires, and tubes, as pores with diameters on the
order of 10 nm can be achieved.13–16 Experimental efforts
have also been able to significantly refine the regularity of
the pore arrays.17

Theoretical attempts to understand the various phenomena
and mechanisms within this system have unfortunately not
been able to keep up with the quickly growing experimental
progress. Although advances have been made in general as-
pects of AAO formation, they lack in a precise description of
the physical and chemical phenomena. Models for the steady
growth of a single pore were proposed in Refs. 18 and 19
and long-wave linear stability analysis was performed on a
similar model in Ref. 20. Works such as in Refs. 20–22,
however, lack any physical mechanism to damp short-wave
disturbances. In Ref. 23 the contribution of the Laplace pres-
sure to the activation energy of reactions at each deformable
interface was proposed as a mechanism to provide this short-
wave cutoff. In Ref. 24 the effects of interfacial diffusion at
the metal-oxide �MO� interface were investigated, and in
Ref. 25 the effects of a field-dependent oxide conductivity
were explored. The model proposed by Singh et al.26,27 in-
cluded the contributions of elastic stress to the surface acti-
vation energies, and the validity of this model was explored
experimentally in Refs. 28–31. It was shown in Refs. 26 and
27 that elastic effects can result in a short-wave instability
which can explain the formation of hexagonally ordered
pores.

In this work, we propose a model which incorporates the
electrochemical transport of oxygen ions through the oxide

layer. We use the Nernst-Planck equation to determine the
flux of ions within the oxide and the Butler-Volmer relations
to determine this flux at the interfaces. Once our model is
established, we perform linear stability analysis on a basic
state of the system to predict the onset of pattern formation at
the interfaces. We show that the electromigration of ions in
the oxide layer can result in a short-wave instability even in
the absence of elastic effects thus leading to the formation of
hexagonally ordered pore arrays. We then perform numerical
simulations of the system to verify our predictions.

II. MATHEMATICAL MODEL

Consider an oxide layer on a metal surface during anod-
ization. The domain is defined by setting the z axis to be
perpendicular to the initially planar anode surface and point-
ing into the electrolyte. The MO and oxide-electrolyte �OE�
interfaces are defined as z=h1�x , t� and z=h2�x , t�, respec-
tively, with x= �x ,y�, as shown in Fig. 1. Within the oxide,
ionic flows are induced by sufficiently large electric fields.32

Although there are several ion species present,18 we will be
considering the electrochemical transport of oxygen ions, as
they are responsible for the creation of the oxide at the MO
interface and result from the oxide dissolution at the OE
interface.33 In analyzing the evolution of the oxygen ion con-
centration C, we assume that all chemical reactions occur at
the interfaces and thus write a conservation law

�C
�t

+ � · j = 0, �1�

where we are using the Nernst-Planck equation

FIG. 1. Schematic of interfaces at anode surface. Note that the
domain has been rotated.
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j = − D � C − �CE �2�

to describe the ion flux in the oxide. Here, D is the diffusiv-
ity, � is the electric mobility, E is the electric field induced
by the voltage applied to the anode, and the sign of the
advection term has been taken such that ��0. The oxide can
support electric fields of the order �E��109 V /m �Chap. 6 in
Ref. 11�, and as the magnitude of this field is very large, we
neglect any perturbations to the field due to the presence of
unpaired free charges and assume that the field is instead
determined by the boundary conditions. If we additionally
assume the oxide electric permittivity to be constant, the
electric field can be modeled using Gauss’ law in the form
� ·E=0. In expressing the field in terms of its potential
E=−��, we can write the bulk equations within the oxide as

�C
�t

= D�2C − � � � · �C, �2� = 0. �3�

For simplicity, we will neglect any penetration of the field
into the electrolyte and assume the entire potential drop to
occur within the oxide layer. This gives the Dirichlet bound-
ary conditions

� = V on z = h1�x,t�, � = 0 on z = h2�x,t� , �4�

where V is the voltage applied to the anode. In the case of
aluminum oxide, the total dissolution-oxidation reaction is
given by Al2O3�2Al3++3O2−. To model the ion flux at
each interface, we consider only the leading-order oxidation
and dissolution reactions at the MO and OE interfaces, re-
spectively, and neglect any inverse reactions. Thus, the dis-
solution reaction Al2O3→2Al3++3O2− takes place at the OE
interface, and the oxidation reaction 2Al3++3O2−→Al2O3
occurs at the MO interface. This gives the relations

jn = − K1C on z = h1�x,t�, jn = − K2 on z = h2�x,t� ,

�5�

where the subscript n denotes the normal component of the
flux j and the rates K1,2 are kinetic coefficients characterizing
the ionic currents produced by the reactions at each interface.
We have taken the unit normal pointing away from the metal
substrate at the MO interface and into the electrolyte at the
OE interface. Since the dissolution reaction occurs only in
the presence of the electrolyte through several intermediate
reactions, in which hydrogen ions participate, we consider
the rate K2 to be proportional to the concentration of hydro-
gen ions, which we have assumed to be constant along the
OE interface. From transition-state theory, it is also known
that the reaction rates depend exponentially on the activation
energies E1,2

a at h1,2�x , t�, so we must take into account the
contributions from both the electric field and the interfacial
deformations �Laplace pressure� to these energies.23,34 We
then can write these rates in the form of the Butler-Volmer
relations

K1,2 = k1,2 exp��En − �1,2�� , �6�

where k1,2 are the reaction-rate constants in the absence of
the electric field and any interfacial deformations and En de-
notes the normal component of the electric field. The param-

eter �=qc�s /2kBT, where qc is the absolute charge of an
oxygen ion, �s is the thickness of the Stern layer,35,36 and kBT
is the thermal energy �kB is the Boltzmann constant and T is
absolute temperature�. Note that the symmetry factor in �
has been taken as 1/2 for simplicity. This factor has been
observed to be very close to 1/2 in many systems.37 The
constants �1,2=�1,2

a /	oxkBT for h1,2�x , t�, where 	ox is the
number density of the oxide, the activation surface energies
�1,2

a =	ox��E1,2
a /���, and ��−� ·n is twice the mean interfa-

cial curvature. We can finally describe the interfacial evolu-
tion by noting that the creation or dissolution of the oxide at
each interface will be, respectively, proportional to the ab-
sorption or creation of oxygen ions at these interfaces. We
then write

jn = 	vn =
	�th1,2

�1 + ��h1,2�2
on z = h1,2�x,t� , �7�

where vn is the normal velocity of the interface. Using the
stoichiometry of the total reaction given above, we take
	=3	ox.

A. Nondimensional problem

We nondimensionalize the system by introducing the
following transformations:

�x,y,z� → 	�s

2

�x,y,z�, t → 	 �s

2

4D
t ,

� → 	 kBT

qc

�, C → 	C , �8�

and by defining

V� =
qcV

kBT
, �1,2

� =
qc�1,2

�kBT
, k1

� =
�k1

�
, k2

� =
�k2

	�
. �9�

Note that we have used the Einstein mobility relation
�=qcD /kBT to simplify some of these quantities. This re-
duces our system to

�C
�t

= �2C − �� · �C, �2� = 0 for z � �h1,h2� , �10�

� = V�,
�C
�n

−
��

�n
C = k1

�C exp	�1
� � · n −

��

�n

 = − vn on z

= h1�x,t� , �11�

� = 0,
�C
�n

−
��

�n
C = k2

� exp	�2
� � · n −

��

�n

 = − vn on z

= h2�x,t� . �12�

For the remainder of the analysis, we will drop the asterisks
for convenience.

B. Basic state

We begin our analysis of the system �10�–�12� by seeking
a traveling-wave solution corresponding to two planar inter-
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faces with a fixed distance L between them moving with
speed v�0 in the −z direction. This would represent a bar-
rier layer in which the oxidation of the metal substrate is
balanced by the dissolution of the oxide into the electrolyte.
Go over to the moving reference frame 
=z+vt with the
�x ,y� plane coincident with the MO interface, and let
�=�0�
� and C=C0�
�. Then Eq. �10� becomes

C0� − �v + �0��C0� = 0, �0� = 0, �13�

where primes denote differentiation with respect to 
. The
potential can be expressed in terms of the oxide thickness
L=h2−h1 as

�0�z� = V − E
, E = V/L . �14�

The boundary conditions �11� and �12� are reduced to

v = k1C0eE, C0� + �E − k1eE�C0 = 0 at z = 0, �15�

v = k2eE, C0� + EC0 = k2eE at z = L . �16�

This gives the system velocity and concentration as

v =
k2

k1
E, C0 =

k2

k1
, �17�

where the nondimensional electric field is defined as a solu-
tion of the transcendental equation

E = k1 exp�E� . �18�

Although this equation is valid for all values of E, this basic
state exists only for k1�1 /e. In this case, there are two so-
lutions which correspond to two different oxide thicknesses,
and it can be shown that the basic state corresponding to the
thicker oxide layer will never be unstable with respect to
spatially homogeneous perturbations. From now on, we shall
hence only consider this basic state. For the advection speed
of ions to exceed the speed of the reference frame, we must
have E�v which is satisfied if k1�k2. Note that this basic
state is invariant with respect to the length L as long as the
field E is kept fixed. In other words, the barrier layer thick-
ness scales linearly with the voltage, which has been ob-
served experimentally �Chap. 6 in Ref. 11�.

III. LINEAR STABILITY ANALYSIS

We next examine the stability of this basic state solution
by perturbing the electric potential, ion concentration, and
interfaces as

� = V − E
 + �̂�
�e�t+iq·x, C =
k2

k1
+ Ĉ�
�e�t+iq·x, �19�

h1 = ĥ1e�t+iq·x, h2 = L + ĥ2e�t+iq·x, �20�

where q is the wave vector of a given normal mode and � is
the growth rate of that mode. We then linearize to obtain the
following problems:

Ĉ� + �E − v�Ĉ� − �� + q2�Ĉ = 0, �̂� − q2�̂ = 0, �21�

where q= �q�. Using the linearized boundary conditions

�̂�0� = − �0�ĥ1 = Eĥ1, �̂�L� = − �0�ĥ2 = Eĥ2, �22�

the solution to the potential perturbation eigenfunction is

�̂�
� = − E
sinh�q�
 − L��

sinh�qL�
ĥ1 + E

sinh�q
�
sinh�qL�

ĥ2. �23�

The remaining linearized boundary conditions are

Ĉ��0� = �1 − E�C0�̂��0� + �1EC0q2ĥ1, �24�

EĈ�0� = EC0�̂��0� − �� + E�1q2C0�ĥ1 �25�

at the MO interface �
=0� and

Ĉ��L� + EĈ�L� = �C0 − k2eE��̂��L� + �2k2eEq2ĥ2, �26�

0 = − k2eE�̂��L� + �� + �2k2eEq2�ĥ2 �27�

at the OE interface �
=L�. The general solution to the con-
centration perturbation eigenfunction is given by

Ĉ�
� = c1e�+
 + c2e�−
, �
 = −
1

2
�E

− v� 

1

2
��E − v�2 + 4�� + q2� . �28�

We can see from this system that the vector of interfacial

perturbation eigenfunctions, h= �ĥ1 , ĥ2�, can be written as

h��,q� � 
cosh�qL� − 	 k1� + �2k2Eq2

k2E2q

sinh�qL�,1� .

�29�

We should expect �ĥ1�� �ĥ2�, as the unsaturated pore growth
occurs at the OE interface. Furthermore, we expect these
components to be of the same sign to imply a sinuous mode
�as opposed to a varicose mode�. This gives the relations

0 � cosh�qL� − 	 k1� + �2k2Eq2

k2E2q

sinh�qL� � 1 �30�

and allows us to neglect regions of parameter space which
lead to unphysical results. We next write the boundary con-
ditions �24�–�26� as the system �u=0, where the vector of

unknowns u= �c1 ,c2 , ĥ1 , ĥ2�. For u to have a nontrivial solu-
tion, the linear operator must be singular, and hence we set
det���=0 to determine the dispersion relation. This yields a
quite cumbersome implicitly defined function ��q�, which
can be handled numerically. We can now use this relation to
determine the stability of the basic state and find parameter
regimes in which the system yields a short-wave instability,
which is necessary for the initial development of ordered
pores. It is also known that systems which lack reflectional
symmetry near the onset of such an instability will then sup-
port quadratic resonances of perturbations and lead to hex-
agonal spatial patterns.38,39 As the applied electric field
breaks this symmetry, we can then expect hexagonally or-
dered pores to develop at the interfaces in these regimes.
Parameter regimes in which long-wave instabilities are ob-
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served would correspond to the development of irregular
pores as seen in anodized titanium oxide for example or in
AAO for some electrolytes.10 Plots of ��q� are shown in
Figs. 2 and 3 as the laboratory control parameters V and pH
are varied respectively. In Fig. 2, we see that the instability
grows from short-wave �curve b� to long-wave �curve c�
with an increase in the applied voltage. Additionally, there is
also a decrease in the maximal excited wave number, which
corresponds to an increase in the pore diameter and spacing
as seen in experiment.10,18,40 Figure 3 shows the dependence
of the dispersion curves on the pH of the electrolyte. As the
parameter k2 is linearly dependent on the concentration of
hydrogen ions, the pH will then logarithmically depend on
the inverse of k2. It is seen that an increase in pH �or de-

crease in k2� has qualitatively similar effects as those of in-
creases in the voltage. This has also been observed
experimentally.18,20 We can also use this dispersion relation
to calculate phase diagrams as shown in Fig. 4 to determine
parameter regimes for damped short-wave and long-wave in-
stabilities. The boundaries of these instability types are de-
termined from the system

� = 0,
��

�q
= 0. �31�

The phase diagram in the applied voltage and electrolyte pH
would suggest that, at higher voltages, a lower pH would be
required to obtain a short-wave instability. The second phase
diagram in the interfacial reaction rates shows that there is
only a very small range in which physically valid short-wave
instabilities are observed. This narrow domain of chemical
kinetic coefficients might explain why the self-assembly of
ordered pores is only observed for aluminum and not other
substrate materials characterized by different chemical reac-
tions.

IV. NUMERICAL SIMULATIONS

In performing numerical simulations of the system
�10�–�12�, the presence of the free interfaces can introduce
some serious computational difficulties. To circumvent this
issue, we transform the z coordinate as

z →
z − h1�x,t�

h2�x,t� − h1�x,t�

which, although complicating the differential operators,
maps the time-dependent computational domain to the fixed
domain x�R2 ,z� �0,1�. We use an explicit finite-difference
method for temporal updating and spatial discretization, and
periodic boundary conditions in the x and y directions are
used to approximate the laterally infinite domains. To im-
prove the accuracy without seriously affecting computational
cost, we use finer meshes for the MO and OE interfaces and
interpolate the fields at these interfaces with cubic splines.
The numerical reference frame is also kept coincident with
the MO interface to reduce round-off error, and the electric
potential is calculated at each time step with successive over-
relaxation iterations. A typical simulation of the two inter-
faces is shown in Fig. 5, where the darker areas in each
figure indicate the deeper interfacial regions. The parameters
were taken such that the system had a long-wave instability
and the disordered array of pores can be seen. Beyond this
point in the computational evolution, the deeper pores con-
tinue their unsaturated growth until numerical blowup, where
the numerical approximations break down and fail to de-
scribe the system dynamics. At lower voltages, the system
will be close to the onset of a short-wave instability. The
results of a simulation in this parameter regime are shown in
Fig. 6 in comparison to an experimental scanning electron
microscopy �SEM� micrograph of AAO obtained in Ref. 17.
The initial formation of hexagonal patterns with some de-
fects can be seen, where these defects are similar to those
observed experimentally in the anodization of aluminum

FIG. 2. Dependence of the dispersion curves on the rescaled
voltage V: �a� V=3.8, �b� V=4, and �c� V=4.2. The remaining pa-
rameters are k1=0.35, k2=0.21, �1=5.25, and �2=2.9.

FIG. 3. Dependence of dispersion curves on pH which increases
logarithmically as k2 decreases: �a� k2=0.215, �b� k2=0.210, and �c�
k2=0.205. The remaining parameters are V=4, k1=0.35, �1=5.25,
and �2=2.9.
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without a pretextured surface.9 The pore diameters have also
decreased with the voltage as predicted by both the linear
stability analysis and experiment.10,18,40 We note that the
nondimensional length scales shown in Figs. 5 and 6 have
the same order of magnitude as dimensional scales expressed
in nanometers.

A more extensive numerical investigation might also yield
results in which the hexagonal patterns are more ordered.
There are also parameter regimes in which the growth satu-
rates and produces an ordered array of circular depressions
similar to those seen in Fig. 6. This phenomenon has been
observed experimentally in works such as in Ref. 41, where
single-crystal silicon is anodized in a fluoride electrolyte of

neutral pH. While this is promising in supporting the gener-
ality of the mathematical model presented, this work also
suggests that, in addition to the oxidation and dissolution
reactions, oxygen evolution from water splitting in the elec-
trolyte could be essential for pattern formation as an aid to
pore nucleation. A more complete model which took into
account the electrochemical dynamics of the electrolyte
would be necessary to capture this feature.

V. CONCLUSION

A model for the initial pattern selection and development
in porous AAO has been formulated. This model incorpo-

FIG. 4. Left: phase diagram in the applied voltage and pH showing regions of damped �D�, short-wave �SW�, and long-wave �LW�
instabilities. The remaining parameters are k1=0.35, �1=5.25, and �2=2.9 with k2=2.1 for pH=0. Right: Phase diagram in the interfacial
reaction rates. U marks the region of unphysical solutions which violate the relations 0�k2�k1�1 /e, while SW�U� denote unphysical
short-wave instabilities which violate relation �30�. The remaining parameters are V=4, �1=5.25, and �2=2.9.

FIG. 5. Left: top-down view of OE interface. Right: top-down view of MO interface. Simulations were generated with the nondimen-
sional parameters V=14, k1=0.36, k2=0.21, �1=5.15, and �2=3.15.
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rates the electrochemical transport of oxygen ions through
aluminum oxide induced by an applied electric field. We use
the Nernst-Planck equation to describe the ion migration
within the bulk of the oxide and use the Butler-Volmer rela-
tions to model the dependence of the interfacial reactions on
activation energies, which include contributions from the
electric field and surface energy. From this model, we have
calculated a basic state which represents a uniformly thick
barrier layer in which the rate of corrosion into the anode is
balanced by the dissolution rate into the electrolyte. We have
performed a linear stability analysis on this state and shown
parameter regimes that produce a short-wave instability,
which is necessary for the development of hexagonally or-
dered pore arrays. Additionally, numerical simulations of the
governing equations were performed to verify the results of

the linear stability analysis, and we observed the initial de-
velopment of hexagonally ordered porous arrays with defects
before the unsaturated growth of the pores led to numerical
blowup. We can therefore conclude that ion migration
through the oxide layer coupled to the nonlinear reaction
rates at the two interfaces can result in a short-wave instabil-
ity and the formation of hexagonally ordered pores even in
the absence of the elastic effects considered in Refs. 26 and
27.
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FIG. 6. Top left: SEM image of AAO hole configuration. Reprinted in part from Ref. 17 with permission of The Electrochemical Society
�2001�©. Top right: numerical simulation of MO �above in translucent image� and OE �below in solid image� interfaces. Bottom left: Top
down view of OE interface. Bottom right: Top down view of MO interface. Simulations were generated with the nondimensional parameters
V=4.3, k1=0.36, k2=0.21, �1=5.15, and �2=3.15.
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